Development of Long-Life Lithium/Sulfur-Containing Polyacrylonitrile Cells

Ping Liu
University of California, San Diego
June 4th, 2020

Project ID # bat454

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Oct. 2016
- Project end date: Sept. 2021
- Percent complete: 70%

Budget

- Total project funding
 - DOE share \$ 50 M
 - Contractor share
- Funding for FY 2019: \$ 10 M
- Funding for FY 2020 (if available): \$ 10 M

Barriers

- Barriers addressed
 - 500 Wh/kg Li-S battery
 - High loading sulfur cathode
 - Cycle life
 - Stable, high efficiency lithium anode
 - Solid electrolyte for lithium protection

Partners

- Project Lead
 - PNNL
- National Laboratories
 - PNNL, INL, Brookhaven, SLAC/Stanford
- Academia
 - Binghamton, U. Washington, U. Texas

Relevance

Overall Battery 500 Objective

 Develop commercially viable Li battery technologies with a cell level specific energy of 500 Wh/kg through innovative electrode and cell designs that enable utilization of maximum capacity of advanced electrode materials

Chemistry

- Utilize a Li metal anode combined with a compatible electrolyte system, and either
 - A nickel-rich NMC or S

Keystone project (2): Electrode Architecture

- Leverages materials and chemistry advances from Keystone (1): Materials and Interfaces to enable stable, high loading anode and cathode
- Provides component and materials support for Keystone (3) Cell Design and Integration

Milestones: Keystone 2 and UCSD

End date	12/31/2019	03/31/2020	06/30/20020	09/30/2010
Keystone Project 2	Report Li/SPAN coin cell	Develop new 3D anode	Develop new polymer	Demonstrate the
Electrode Architecture	results that can support a	structures and test such	protective layers for Li	performance of a SPAN
	250 Wh/kg, 2 Ah pouch	using coin cell standard	anode, test and report such	based Li-S pouch cell for
	design with 100 cycles.	protocols to achieve 300- 350 Wh/kg (cell-level) for	using coin cell standard protocols.	300-350 Wh/kg.
	Completed	200 cycles.		On Track
			On Track	
		Completed		
UCSD	Report Li/SPAN coin cell results that can support a 250 Wh/kg, 2 Ah pouch design with 100 cycles.	Quantify the 3D morphology of cycled lithium anode under various pressure.	Identify a pathway to more than 350 Wh/kg (scaled to 2 Ah) using SPAN. Report SEI characterization of lithium anode with surface	Demonstrate the performance of a SPAN based Li-S pouch cell for 300-350 Wh/kg.
	Completed	Completed	coatings.	On Track
			On Track	

Keystone 2 Challenges and Approaches

3D Lithium 3D hosts with stable interface with electrolytes

Modeling

3D architecture

A combined experiment, modeling, and characterization effort to:

- Understand how lithium is lost.
- Model effect of pressure and other experimental factors
- Develop new solid electrolytes
- Design new 3D architectures to achieve high efficiency and long cycle life

Thick cathode architecture > 6 mAh/cm² SPAN

Engineer high-loading SPAN electrode to maximize cell energy density

- Develop electrolyte formulations that enable both Li and SPAN
- Optimize binder, porosity, and electrode conductivity
- Demonstrate lean electrolyte operation

NATIONAL LABORATORY

Technical Accomplishments: New 3D Li Architecture

Technical Accomplishments: New Polymer Coating Layer

Artificial SEI design with multifunction in a single matrix

- 1. Dynamic flowability
- 2. Fast Li⁺ single-ion conduction
- 3. Electrolyte blocking

Bat #365

Z. Bao and Y. Cui

Technical Accomplishments: New Polymer Electrolytes and Protection layers

Polymer/polymer composite ultrathin electrolyte

Polymer/inorganic composite electrolyte

GDC: Gd:CeO₂ LSGM: La0.80Sr0.20Ga0.80Mq0.20O3-X

J. B. Goodenough

Technical Accomplishments: Stable Li/SPAN Cell to support 250 Wh/kg Pouch Design

Wang, ACS Energy Lett. 3, 289

- SPAN is a low-cost, highly stable S-based cathode
- SPAN cycles well in carbonate, not ether

Cycle number

New Electrolyte That Enables Both Li and SPAN

Avg. CE of 99.37% for 900 cycles

1200 cycles with no capacity decay

Lithium Morphology After Cycling

After 62 cycles against SPAN

LDEE enables the best Li morphology

Surface Chemistry of Cycled SPAN

LDEE promotes the formation of a LiF-rich CEI to protect SPAN

Lean Electrolyte With Thick SPAN Cathode

Responses to Previous Year Reviewers' Comments

Not reviewed

UCSD Partners and Collaborators

- Brookhaven National Laboratory: in-situ XRD and PDF
- Pacific Northwest National Laboratory: Pouch cell design, fabrication, and testing
- Texas A&M University: Computational study of SPAN structures
- University of Washington: Electrochemical modeling of advanced electrode architectures
- Binghamton University: NMC811 data exchange
- UT-Austin: synthesis of NMC811 materials

Remaining challenges for Keystone 2-Li metal

Will 3D Li electrodes make a difference in pouch cells?

- How to translate coin cell performance into pouch cells?
- Are 3D anodes scalable?
- Can solid electrolyte/protective coating push Li efficiency higher?
 - Is protective coating synergistic with electrolytes and 3D architectures?
 - How do protective layers work? Do they swell? Do they have selective ion transport? How durable during cycling?

Remaining Challenges Keystone 2-Li/Thick SPAN

Credit: PNNL
Based on 800 mAh/g capacity

- Can we further increase loading without losing power?
- Can we raise the SPAN specific capacity?
- Will the results translate into pouch cells?

Proposed Future Work-Keystone 2

- Optimize and scale up 3D Li anodes and evaluate them in pouch cells with design parameters (areal specific capacity) that can support Battery500 cell level deliverables;
- Characterize protective coating layers/solid electrolytes after cycling to understand their operating mechanisms and failure modes; Continue to develop mechanically durable, ion conducting materials;
- Determine the maximum sulfur content/capacity of SPAN material;
 Engineer thick cathodes to support pouch cell design goals;
 Demonstrate pouch cell performance.

Keystone 2 Summary

- Several 3D Li anodes have been fabricated with loading and cycling performance supporting 300-350 Wh/kg cell designs;
- Polymer protective coatings have been developed based on a set of design rules;
- Thin polymer and composite electrolytes have been developed that can serve as lithium metal protection layers
- A Li/SPAN cell enabled by a new electrolyte has shown promising cycle life and potential for high areal loading and lean electrolyte operation

